

275 m high Yusufeli arch dam Digital ground model - data handling and applications

Yusufeli dam

2013: DSI awarded design & built contract to a Turkish consortium, lead by LIMAK, with iC consulenten acting as geotechnical consultant.

July 2018: completion of dam foundation excavation.

February 2022: completion of dam concreting & grouting.

November 2022: start of impounding.

End 2023: completion of impounding.

Yusufeli arch dam - digital ground model

NORWEGIAN TUNNELLING SOCIE Up to 480 m high cut slopes, stabilized by ~ 6 500 prestressed anchors, top-2.2 billion m³ down excavation accessed via network of tunnels including spiral galleries. reservoir volume. Rough terrain with very steep and high valley flanks 558 MW underground powerhouse. 275 m high double curved concrete dam. Deformation properties at some areas of the foundation less favorable than expected > 4 million m³ concrete in dam Extensive consolidation grouting required: body. > 8 500 m³ cement grout in approximately 12 000 grout holes with an accumulated length of 216 000 m. www.ic-group.org Johannes Kleberger, Irmina Pöschl, Jonas Weil

iC

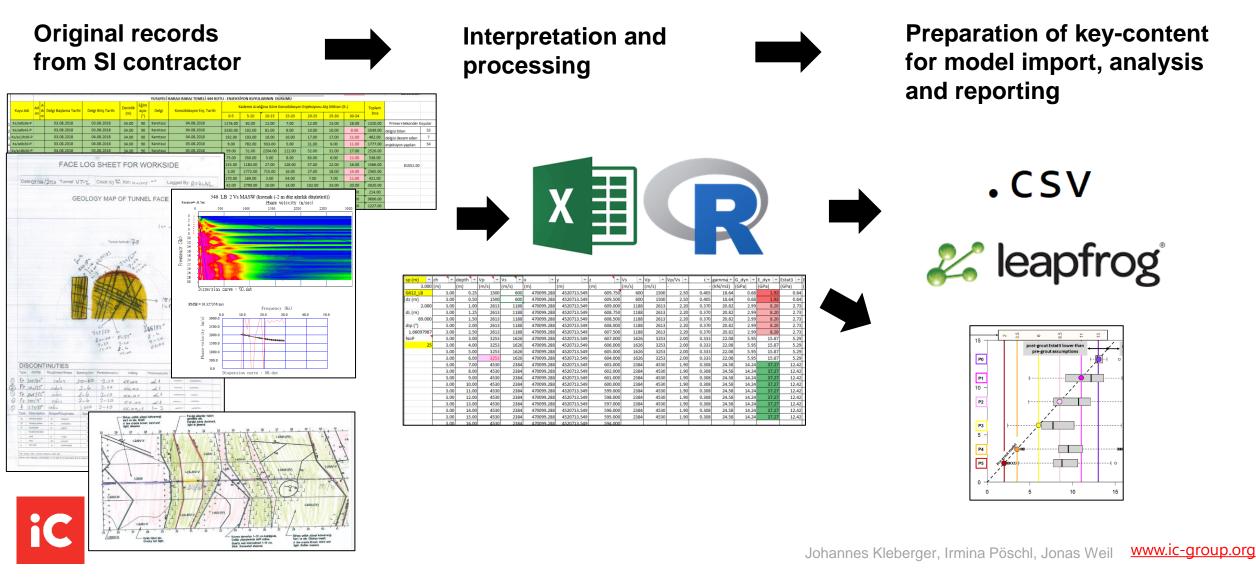
Yusufeli arch dam - digital ground model

NORWEGIAN TUNNELLING SOCIETY

Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Site activities	· ·		· · ·							·
diversion tunnel	started 2012									
access roads and tunnels	including drainage and grouting alleries				including spi	llway tunnels				
caverns and shafts										
cut slope excavation	access roads		above crest							
dam foundation excavation										
dam + abutment concrete										
grouting	grouting test pane			els	curtain, consolidation and "relaxed-rock mass-				ng"	
Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Geological input data										
field mapping	especially left valley flank									
boreholes and in situ testing	including pre-tender data					-	verification survey			
tunnel documentation										
slope documentation			above crest dam footprint							
refraction seismic		from surface and galleries								
displacement monitoring		natural- and cut slopes, including InSAR								
grouting records										
Model applications										
geological + geotechnical										
understanding and concept										
dam foundation model								post gro	ut model	-
grouting concept								optimisation		
slope design (iC)							spillway			
tunnel and cavern design							spillway			
verification and optimisation										
Project coordination			guidi	ng and coord	linating the de	sign and cons	truction proce	esses		

Johannes Kleberger, Irmina Pöschl, Jonas Weil <u>www.ic-group.org</u>

TUNNELLING SOCIETY


Data handling

No mature digital work space at project start (2013)

- Existing information in PDF formats, simple terrain models, 2D CAD drawings
- Site investigation data received in paper, PDF and contractor's native excel formats
- Classical field mapping and tunnel documentation etc. with pencil and paper
- Project-specific classification systems developed during construction
- No database solutions and specifications
- → Successive development of custom system for data handling and storage, using:
 - Excel templates suitable for interpretation and analysis
 - Custom scripts (e.g. software R) for extraction from native formats, processing and analysis
 - Export and storage of complex csv files corresponding to Leapfrog's internal database
 - Complex model hosted on Seequent's Central platform

```
Trondheim, 30.01.2024
```

Data handling: Digitalization and model import

Factual data in Leapfrog model:

Data-driven:

- Borehole data
- Points
- Block models
- GIS data

Visual:

- Polylines
- References maps and sections

Model content 1 underground facilities 2 terrain models and excavation (transparent) 3 tunnel axis (>20km / 130 adits, galleries and tunnels for construction and operation) 2 Factual data in digital model (excluding grouting and verification survey) 4 borehole logs (ca. 16,300m / 280 holes) 3 5 geological tunnel and shaft documentation (>2250 face logs) 6 geological slope documentation (ca. 200,000m² / >1000 A4 logging sheets) 7 dilatometer tests (>500 tests) 8 plateload test (44 tests) 9 crosshole seismic survey (> 30 profiles) Johannes Kleberger, Irmina Pöse **10 refraction seismic profiles (>60 profiles)**

Selection of geotechnical data at RB abutment

> Plunge +26 Azimuth 141

Factual data in Leapfrog model - data-driven:

Leapfrog "Boreholes" were used for classical borehole information, but also for other data that could be displayed along "alignments", such as

- Tunnel alignments:
 - Face logging data
 - Discontinuity data
 - Seismic velocities
 - In situ testing (e.g. plate-load tests in galleries)
 - Water inflow
- Seismic profiles
- Scan line mapping
- Monitoring devices
 - installed equipment (e.g. extensometers, inclinometers)
 - Measured deformation rates
- Displacement paths
 - Including time-dependent information

4	
* Estat3_	SeisCrossHole_1810
Location	470332.849997, 4520319.5, 600.599999237
id	339
column	S18_RGD-5_2-3
Vs	2277.00
Vp	5832.00
Vp_Vs	2.56
poisson	0.41
gamma	27.14
G_dyn	14.34
G_dyn E_dyn	14.34 40.45

Factual data in Leapfrog model - data-driven:

Many other observations and measurements were imported as points with xyz-coordinates,

- Grids with results from seismic surveys
- Field observations
- Monitoring devises (e.g. load cells from pre-stressed anchors)
- Displacements measurements e.g. from InSAR
- Relevant design structures / information

Applications:

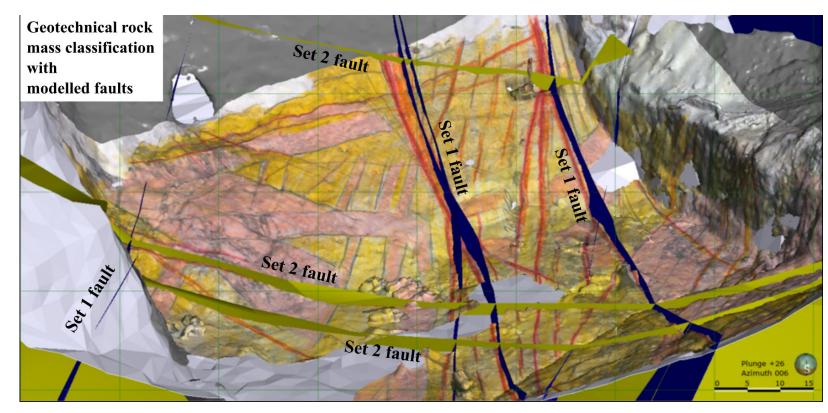
iC

- Query information in model during "manual analysis"
- Interpretation and interpolation of numerical values

Factual data in Leapfrog model – visual only

Information that was implemented in the form im images, maps and drawings:

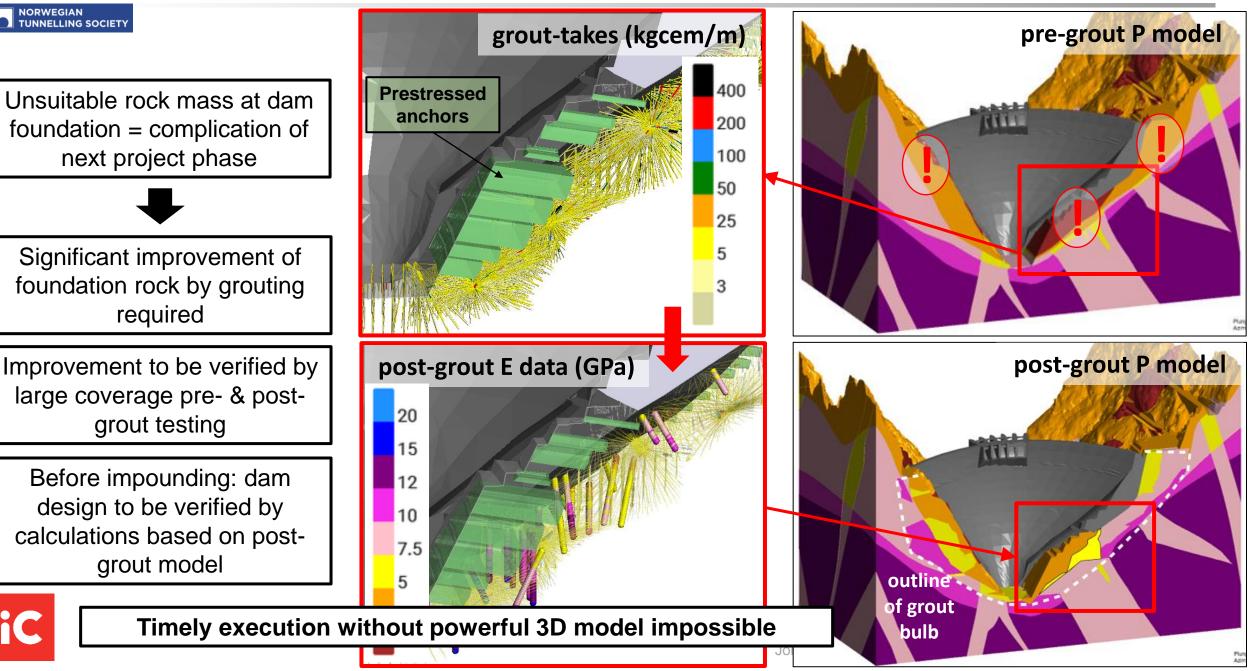
- Classical orthophotos, maps and technical layouts
- Textured 3D meshes from e.g. photogrammetry
- Interpretation from geophysical surveys
- Geological documentation drawings
 - Tunnels
 - Cut slopes
- Interpreted sections for local geotechnical analysis

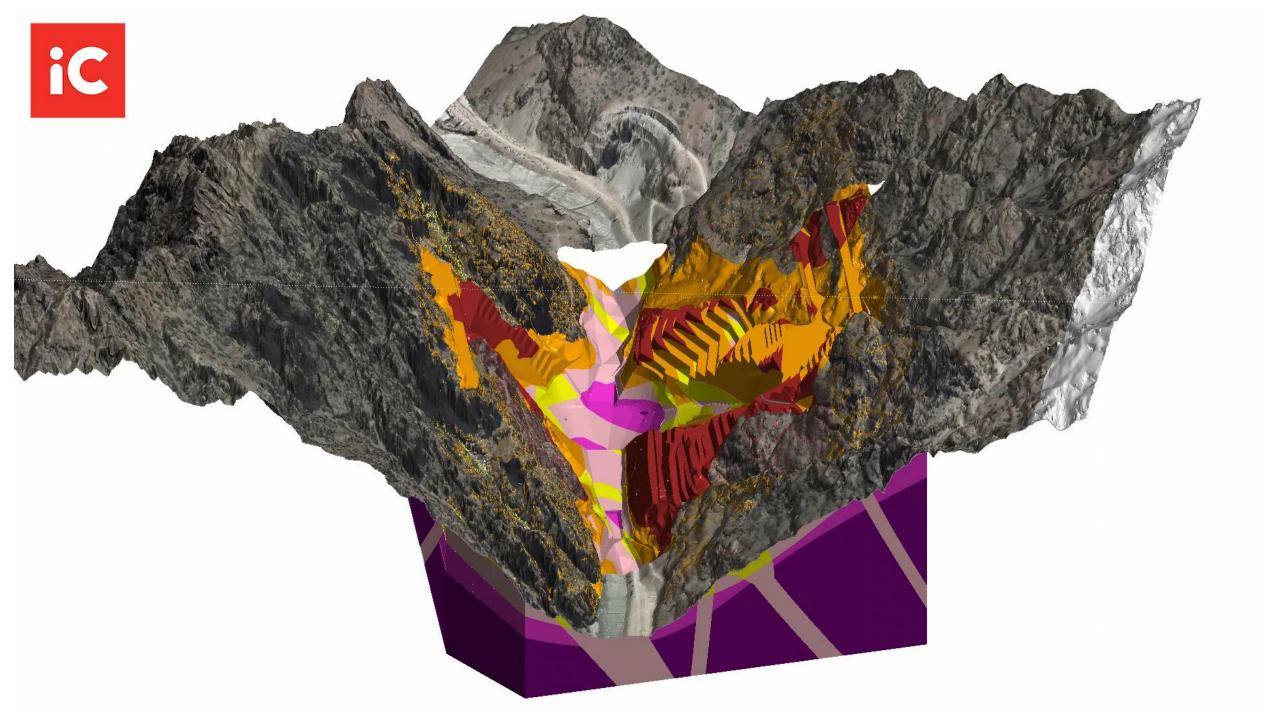

Photorealistic terrain model of excavation base at a dam site...

Factual data in Leapfrog model – visual only

Information that was implemented in the form im images, maps and drawings:

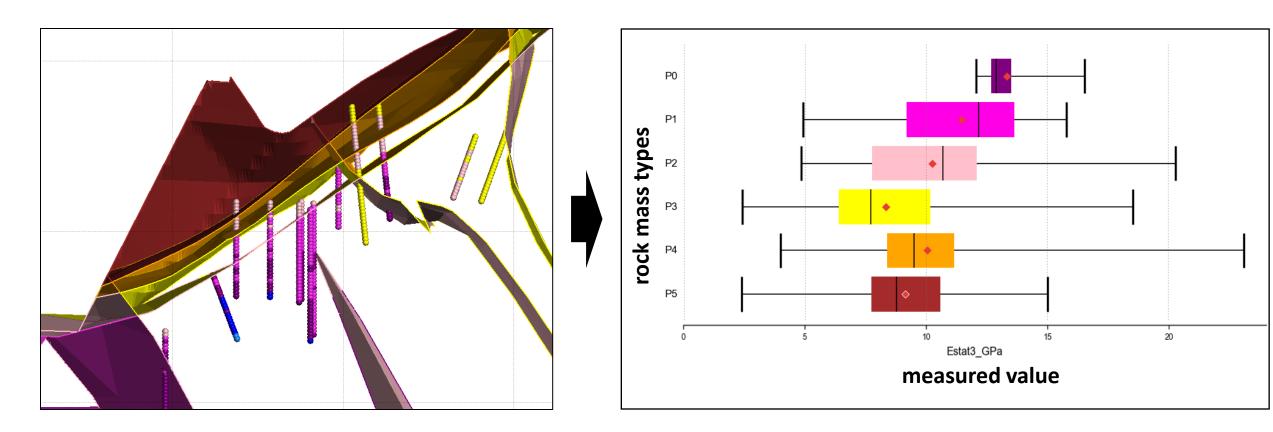
- Classical orthophotos, maps and technical layouts
- Textured 3D meshes from e.g. photogrammetry
- Interpretation from geophysical surveys
- Geological documentation drawings
 - Tunnels
 - Cut slopes
- Interpreted sections for local geotechnical analysis




... used as the basis for geological documentation and 3D-modelling of faults and rock mass types

Yusufeli Dam, Turkey

Yusufeli arch dam - digital ground model




```
Trondheim, 30.01.2024
```

Analysis of test results vs. rock mass model

Test results are grouped according to their position in the post-grout geotechnical model

Thank you for your attention!

Details on digital modeling approach and rock mass classification schema:.

ICOLD 2019: Innovative 3D ground models for complex hydropower projects

RMCC2024 October in Oslo

ISRM congress 2023: 275 m high Yusufeli arch dam – Geotechnical modelling during construction

Presentation at

J. Kleberger

l. Pöschl

