NG

Fremtidens injeksjonsprosedyre: Testing og kontroll av materialegenskaper

Bahman Bohloli¹, Ola Skjølsvold², Hans Olav Hognestad³, Elin Katrine Morgan¹, Eivind Grøv², Harald Justnes², Lameck Omondi Omolo¹, Magnus Soldal¹, Heidi Wilkinson¹

¹ Norges Geotekniske Institutt

² SINTEF

³ Mapei

TEKNA-Fremtidens injeksjonsprosedyre Nov 1-2, 2021 Trondheim

Innhold

Introduksjon

- Valg av sementer for eksperimenter
- Test prosedyre og resultater
- Konklusjoner

Introduction

7 Objective

- Investigate index properties of some of the typical cements/grouts
- Present relationship between different parameters
- Assist with the selection of type of cement for grouting

Introduction

- **7** Behaviour of cement grouts under **true tunnelling conditions**
 - Actual temperature in Norwegian tunnels is about 7-10 °C
 - Actual water pressure in tunnels depends on the depth/water table
 - Behaviour of grout is controlled by w/c ratio, grain size distribution, additives, ...
 - We present results of lab tests on 3 types of cements, 4 w/c ratios, at 8 °C and 20 °C
 - We did not consider any **pressure** during curing of samples
 - Most tests are done on cement+water (no additives)

List of lab tests utilized

- Grain size & specific surface area
 - Blaine finness
 - BET
 - Falling drop
- Viscosity

- Marsh cone
- Spread ring
- Rheometer
- Stability and penetration of grout
 - Bleeding/water separation
 - Filtration test

- Setting time
 - Vicat needle
 - Calorimeter-hydration heat
- Strength
 - Uniaxial compressive strength (UCS)
- Permeability
 - Constant head perm test

Properties of cement grout-developing with time/ curing

Nguyen, 2012

Hu et al., 2014

Experimental work: seven cements

- 1. BASF MasterRoc MP650
- 2. BASF MasterRoc MP800
- 3. BASF MasterRoc MP900
- 4. Cementa Ultrafine 12
- 5. Cementa Microfine 20
- 6. Cemex Rapid
- 7. Norcem Industrisement

Fig. 1. Grain size distribution of cements commonly used in Norway for tunnel grouting (After Skjølsvold and Justnes, 2016).

Cements used for this study

Norwegian Public Road Administration's Code of Process 025, standard grouting cement:

- particle size of about 20 μm
- D₉₅<40 μm

Physical properties of cements A, B and C.

Cement type	Density (g/ cm ³)	Blaine fineness (m ² /kg)	Specific surface, BET (m2/kg)	D ₉₅ (µm)
Cement A	3.17	729	1880	17
Cement B Cement C	3.16 3.10	541 706	1930	18 25

Falling drop indicated grain size of grout mix: 20-70 μm

Cement blender, mix @ 2000 rpm, 2 min

Viscosity

Marsh cone

Spread ring

Bleeding (water separation)

Bleeding after 120 minutes

Setting time

Filtration test: API Filter Press

Filter Press:

- Provides data related to penetrability of grout
- Pressure on the grout = 100 psi (7 bar)
- Measure filtration until air reaches the outlet
- Filter sizes used= 63 and 75 mic.

Results of filtration test

Filtered grout: Cement C at 8°C, filter size =75 μm

Filtered grout: Cement C at 20°C, filter size=75 µm

Filter cake and filtered material (mainly water) for Cement B at 8°C, filter size=75 µm

Comparison of filtration stability of different cements at 8°C versus 20°C

Passed percentage at 8°C is not very different from 20°C, slightly higher for cement C.

Cement A shows best penetration

Cement B has the lowest penetration

Passing percentage increases with increasing w/c ratio

Percentage of grout passed through a filter of 75 μ m, for cements A, B and C at 8 vs 20 deg C.

Heat of hydration for different cements at 20 deg C

Strength testing (UCS)

8 °C

w/c > 0.4 water will not be bound by chemical reactions and contributes to increased porosity →decreased strength

Permeability of cured cement samples-7 days

	k (cm/s)	K (mD)
A1.2R	1,83E-07	1,83E-01
B1.0R	1,51E-10	1,51E-04
B1.2R	3,89E-11	3,89E-05
C1.0R	5,35E-10	5,35E-04

Permeability of non-fractured igneous rocks $\approx 1 \times 10^{-2}$ mD

For strict water tightness: cement B &C are good, but cement A?

Hydration temperature versus strength

Comparison between the cements

Property Cement	Bleeding	Filtration	Viscosity	Setting time	strength	Hydr. temp	Rank
А							
В							
С							

Tunnelling and Underground Space Technology 71 (2018) 193-200

Contents lists available at ScienceDirect

Tunnelling and Underground Space Technology

journal homepage: www.elsevier.com/locate/tust

Tunnelling and Underground Space Technology 91 (2019) 103011

Contents lists available at ScienceDirect

Tunnelling and Underground Space Technology

journal homepage: www.elsevier.com/locate/tust

Strength and filtration stability of cement grouts at room and true tunnelling temperatures

Bahman Bohloli^{a,*}, Elin Katrine Morgan^a, Eivind Grøv^b, Ola Skjølsvold^b, Hans Olav Hognestad^c

^a Norwegian Geotechnical Institute, Sognsveien 72, 0855 Oslo, Norway

^b SINTEF Building and Infrastructure, Rich. Birkelands vei 3, 7465 Trondheim, Norway

^c Mapei, Vallsetvegen 6, 2120 Sagstua, Norway

Cements for tunnel grouting – Rheology and flow properties tested at different temperatures

Bahman Bohloli^{a,*}, Ola Skjølsvold^b, Harald Justnes^b, Roger Olsson^{a,c}, Eivind Grøv^b, Arnstein Aarset^a

^a Norwegian Geotechnical Institute, Sognsveien 72, 0855 Oslo, Norway

^b SINTEF Building and Infrastructure, Rich. Birkelands vei 3, 7465 Trondheim, Norway

^c Norwegian University of Science and Technology, Department of Geoscience and Petroleum, Sem Sælands vei 1, 7491 Trondheim, Norway

Summary (1)

- Bleeding, filtration, strength, etc. at high w/c ratios need to be seen in combination for the grout objective
- Filtration stability of cements seems to be independent of grout temperature, but is controlled by w/c ratio
- Viscosity and strength of (grout) samples at 8°C is lower than those cured at 20°C
- Correlation between the heat produced during setting of cement grouts indicates a negative correlation with strength.

Summary (2)

- The results above suggest that there may be a need to evaluate additional parameters for an effective characterization of cement grouts for rock grouting purpose
 - e.g. cement A for best penetration
 - cement B for high strength, etc.
- Our results agree with Stille and Draganovic', 2011: Grout penetrability is the best for fine-grained cement, better than the coarse or very fine-grained cements.
- The results of this study and the correlations suggested may also be used to develop new types of cement products that are more favorable for tunnel grouting.

Acknowledgement

This paper is a part of the research project "True Improvement in Grouting High pressure Technology for tunneling (TIGHT)" financed by the **Research Council** of **Norway** (project no. 236676/O30), in cooperation with **Statens Vegvesen**, **Jernbaneverket**, and industrial partners **BASF**, **Mapei**, **Geovita**, **LNS**, **ITS**, **Normet**, **Bever Control**, **AMV** and **Veidekke**. Research partners in TIGHT are **NGI**, **NTNU** and **SINTEF**, whilst **KIGAM** of Korea and **Nanyang University** in Singapore together with **BeFo** of Sweden are associated with TIGHT.

