

- Literature concerning spoil management
- Spoil = waste ?
- Need of new aggregates resources
- Use of spoil at the Gotthard Base Tunnel
- Key points for a successful material management
 Spoil management 1882

B+ G AG Concrete Technology + Spoil Management

1992 bis ETH Zürich: PhD on the use of TBM rock 1996: excavation material as aggregates for concrete

Tunnel projects:

- CH: AlpTransit Gotthard (57km Length)
 - AlpTransit Lötschberg (35km Length)
 - Nagra (National Cooperative for the Disposal of Radioactive Waste)
 - Bypass Luzern (3km Length)
 - Gotthard Second Road Tunnel (17km Length)
 - Albula II (6km Length)
 - Gletschergarten Luzern (Cavern system)
- F/I: TELT Lion-Turin-Ferroviaire (84km Length)
- AT: Koralm (33km Length)
 - Brenner Base Tunnel, Lot Pfons-Brenner (18km)

Pump storage plan:

- CH: (ATEL/SBB): Nant de Drance
 - (REPower): Lago Bianco
 - (AXPO): Kraftwerke Linth Limmern, incl. dam
 - (KWO): Spitellam, new concrete dam
- Nepal: (Government): Budhigandaki Hydroelectric
- EU Proj.: European research project FP7 Nr. 308389 DRAGON (Development of ressource-efficient and advanced underground technologies, 2012-15; www.dragonproject.eu)

Commissions:

- VSS/SNV: President NFK 3.1: Aggregates
- CEN/TC 154: Aggregates Swiss Delegate
- SIA 162: Swiss Concrete Standards
- ITA AITES: International Tunneling and Underground Space Association.

Animateur WK15 "Underground and Environment"

PROJECT	COUNTRY	CONDITIONS		TUNNELLING METHODS			DAM SITE	
		Rock	Soil	D&B	твм	NATM	Rock	Soil
Brenner Base Tunnel	AT	Ø			Ø			
KoralmTunnel	AT	0	Ø		0			
Semmering Railroad Tunnel	AT	0	Ø	0	Ø	Ø		
Northside Storage Tunnels	AU	0		0	Ø			
Niagara Tunnel Project	CA	0			Ø			
BosslerTunnel	DE	0		0	0			
FidlerTunnel	DE	0		0	Ø			
Gotthard Base Tunnel	СН	0		0	0			
Nant de Drance	СН	0		Ø				
Lötschberg Tunnel	СН	0			0			
Les Farettes	СН	0			0			
GavetTunnels	FR	0		0	Ø			
St. Jean-de-Maurienne (LTF)	FR+IT	0		0	Ø			
Crossrail	GB		0		0			
A1 Andora – San Lorenzo Railway	П		Ø		ø			
Bologna RailwayTunnels	IT		Ø		Ø			
La Maddalena (TELT)	П	Ø		Ø	Ø			
Follo Line RailwayTunnels	NO	Ø		0	Ø			
Førsvatn Earth and Rockfill Dam	NO						Ø	
Kjela Hydropower Plant	NO			0				
OREA Sewer Plant Expansion	NO	Ø		Ø				
Rosten Hydroelectric Power Project	NO							
Vestfold Railway Line	NO	Ø		Ø				
Bay Delta Conservation Plan (water)	US		Ø		Ø			
Brightwater Tunnels (CSO)	US		0		0			
NYC Second Avenue Subway	US	0		0	0	0		
Port of Miami HighwayTunnel	US		Ø		Ø			
Portland West Side CSO Tunnel	US		0		0			
SR 99 Highway Tunnel	US		Ø		Ø			
Suhua Highway Improvements	TW	0				0		
Caopu HighwayTunnel	TW	Ø		0		٢		
Taiwan High Speed Rail								

TUNNEL SPOIL = WASTE?

- In European countries tunnel spoil material is categorized for the purpose of the laws regulating as waste disposal...
- The goal of avoiding waste has become more important with the implementation of the Waste Framework Directive 2008/98/EC at the end of 2010.
- Recycling of material excavated from tunnels is thus more than ever an important issue.

TUNNEL SPOIL = WASTE?

Possible anthropogenic	Drill & Blast		ТВМ		
pollution	Pumped	Cartriged	Convent. Lining	Segment	
Explosive cords, plastic, wood, etc.					
Shotcrete rebound, Steel fibres					
Chromium VI (cement)					
Nitrite / Ammonium					
Hydrocarbon		I			

TIME IS RUNNING OUT FOR SAND & GRAVEL

TIME IS RUNNING OUT FOR SAND & GRAVEL

Cédric Thalmann, www.BplusG.ch

 AlpTransit tunnel projects as a pioneering role (Lötschberg)

 Pumped storage plant: (AXPO) Linth Limmen Power Plant (2500 meters above sea level)

SPOIL MANAGEMENT: THE EXAMPLE OF GOTTHARD BASE TUNNEL

KEY POINTS TO THE SUCCESSFUL SPOIL MANAGEMENT

- 1. Motivated client to handle the issue of spoil management plant.... Elaboration of spoil management concept
- 2. Competent planners, innovative solutions
- 3. Weighing not only economic but also ecological arguments: Transports, energy (LCA, CO2, etc.)
- 4. Careful preliminary investigation about quantity and quality
- 5. Active spoil management leads to goodwill and acceptance of the population (major public attraction: loading stations, gravel plant)
- 6. Spoil management contractual models

TO POINT 1. "MOTIVATED CLIENT"

- The topic of spoil management is often underestimated, neglected and/or approached too late...
- The client transmits the topic of spoil management to the tunnel builder, Example:
 - Note 6: the tunnel builder takes over the construction waste, the demolition and the excavation materials and he **becomes the owner of these materials**.
 - The tunnel builder is responsible for the proper and professional disposal or recycling.
 - The **necessary tests** for the clarification of the suitability of the resulting materials are in the **responsibility of the contactor**. The corresponding **costs must be included in the prices**.

TO POINT 1: ELABORATION OF THE SPOIL MATERIAL MANAGEMENT CONCEPT

TO POINT 1: ELABORATION OF THE SPOIL MATERIAL MANAGEMENT CONCEPT

- Objective: Proof of feasibility
- 1 Introduction
- 1.1 Purpose
- 1.2 Scope
- 1.3 Information Required
- 2 Consistency with Traffic and Access Management Plan
- 3 Spoil Production
- 4 Material Types
- 4.1 Classification
- 4.2 General solid waste or other classifications
- 5 Spoil Reduction, Reuse and Disposal
- 5.1 Spoil Management Hierarchy
- 5.2 Reuse of Spoil
- 5.3 Monitoring and Reporting
- 5.4 Reuse within the Project
- 5.5 Reuse in environmental works/community works
- 5.6 Reuse in development works/land restoration

- 6 Spoil On-site Management
- 6.1 Tunnel Spoil Stockpiles
- 6.2 Spoil stockpiles at temporary decline excavations
- 6.3 Other Spoil Stockpile Locations
- 6.4 Stockpile Management
- 7 Spoil Disposal and Reuse Locations
- 7.1 Approval of Spoil Offsite Reuse Locations
- 8 Spoil Transport
- 8.1 Spoil haulage routes
- 8.2 Spoil tracking
- 9 Review and Improvement
- 9.1 Continuous Improvement
- 9.2 Update and Amendment

TO POINT 2. COMPETENT PLANNERS, INNOVATIVE SOLUTIONS

Simple, flexible systems. Dry preparation (if possible). New processing technologies and further developments in concrete technology.

Les Farettes (Romande Energie)

- Total spoil 135,000 t
- aggregates 50'000 t
- Dry preparation

Muttsee Linth Limmern (AXPO)

- Total spoil 1.7 mio. t
- Aggregates 1 mio. t
- Dry preparation (dam)

TO POINT 3: ECONOMY VS ECOLOGY

Cédric Thalmann, www.BplusG.ch

TO POINT 3. COSTS

Material tests on drill cores, surface samples

Sondage 56	Sondage 58	Sondage 59	Échantillon de
Échantillon:	Échantillon:	Échantillon:	surface
n° 1	n° 2	n° 3	Échantillon:
370.0 – 371.6 m	517.0 – 518.0 m	296.0 – 297.0 m	n° 4
Riting M*12 Sibe - 147.60 6.5.75	Hym Tentin 66.05.13 B1G 171-511E M Sg	59 B+6 296- 257 M C6. 05. 13	

NFF / TBM APPLIVATION III

- EN 12620: Aggregates for concrete
- EN 933-3: Flakiness Index
- EN 933-6: Flow coefficient of aggregates
- EN 1097-2: Methods for the determination of resistance to fragmentation
- EN 1097-3: Determination of loose buld density and voids
- EN 1097-6: Determination of particle density and water absorption
- EN 1367-1: Determination or resistenz to freezing and thawing
- EN 1367-2: Magnesium sulfat test
- EN 1744-1: Chemical analysis
- SIA MB 2042: Prevention to Alkali-Aggregate-Reaction

Usefull as first indication, but: more important is to fulfil the concrete requirements

Granodiorit $\sigma = 250 \text{ N/mm}^2$

TO POINT 5. ACTIVE SPOIL TREATMENT PLANT LEADS TO GOODWILL AND ACCEPTANCE OF THE POPULATION

Public attraction: loading stations, gravel plant, concrete plant

TO POINT 6: SPOIL MANAGEMENT - CONTRACTUAL MODELS

- Spoil management concept needs a lead time (at least 2 years)
- Underground basically belongs to the client
- Proof of feasibility (incl. preliminary tests) of the client to show the usability
- The client determines the spoil quality during the excavation (together with tunnel builder)
- Tunnel and spoil preparation lot: possible as combination lot or separate single lots or mixed form (spoil preparation lot is integrated into the tunnel lot)
- Tunnel builder has little interest in spoil processing
- Only few tunnel builder that offers tunnelling combined with spoil processing
- Create incentives for the tunnel builder to be "interested" spoil processing E.g. by free delivery of the spoil

INNOVATIONS IN SPOIL MANAGEMENT

DEVELOPMENT OF RESOURCE-EFFICIENT AND ADVANCED UNDERGROUND TECHNOLOGIES

www.dragonproject.eu

Automatic analysis of raw material quality (chemical and physical) Automatic sorting in quality classes

SPOIL MANAGEMENT FACTORS VS SERVICE TUNNEL LIFE

GLÜCK AUF!

Progress is not possible without deviation from the standards....

(Frank Zappa «I am the American Dream» 1988)

