NG DIGITAL

Application of geometric and geologic information for optimization in construction projects

Focusing on parametric design and machine learning in Engineering Geology

Tom F. Hansen

Outline

- Introduction to parametric design in Rhino and Grasshopper
- Parametric model of rock support in rock slope
- Parametric model of rock support in tunnelling
- Parametric model for drilling geometry in rock grouting
- Machine learning in engineering geology example from rockmass classification in advance

Parametric 3D modelling

+

Using Rhino and Grasshopper

CAD

Rhinoceros*

The what?

A combination of CAD software and programming interface to create 3D geometries.

Rhino is used to visualize results (CAD)

Grasshopper is used to create the geometry, and muc more...

The what?

- Geometries are parametric we can change the parameters to modify the model seamlessly
- Geometries are computational we apply math to create the design
- Geometries can be generative— we can iterate the process based on goals to obtain the best solution

The how?

- We use Grasshopper a visual programming tool
- It's like scripting but simply more intuitive
- We can create complex geometries in
 3D with little effort fast and efficient
- On this geometry we can perform evaluations and analysis
- We can then communicate our design and results using BIM and VR, or export to drawings.
- Suitable for development of dicipline models
 in rock support, rock grouting and geotechnical constructions.

Parametric model of rock support in rock slope

Example from E18 Rugtvedt-Dørdahl

Parametric model of rock support in rock slope

♦ -5

Elevation

145.587504

145.587504

147.040024

147.040024

147.040024

148.492543

148.492543

148.492543

148.492543

149.945063

149.945063

149.945063

149.945063

151.397583

151.397583

151.397583

152 850103

152.850103

152.850103

152.850103

Plunge

Azimuth

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

-5

124

124

124

124

124

124

124

124

124

124

124

124

124

124

124

124

124

124

124

124

Y Coord

-5.198002

-4.275823

-5.436059

-4.682682

-3.466384

-5.511941

-4.53564

-3.633321

-2.800825

-5.836122

-4.709063

-3.791556

-2.762885

-4.80247

-3.610079

-2.507321

-5,708706

-4.718655

-3.601407

-2.432927

25.128399

25.595238

26.031181

6

18

19

Parametric model of rock bolting in tunnel

Parametric model of drilling geometry for rock grouting

3. In Jaks jonsopplagged for hver ankelt in Jaks jansskjerne er i utgangspunktet likt for tetthetsklasse 1 og 2. Hen ved systemstick forinjeksjan og tetthetsklasse 1 sonderhores det likke systematikk, men kun efter avtale med byggherre. Ved sporalisk forlejeksjen og het thetsklasse 2 skal byggherren ta beslutning on lejeksjen på bakgrune av indekkasje av vann på stuff-flaten eter fra senderbortuit. Disse bones da systematisk og vil langå som en del av injeksjensskjørnen derson der blir eteblert

inne

UVB-22-V-31050

MRDERMISERING AV VESTFOLDBANEN 12.2 Telemark grense – Korsgrunn Jernbaneverket

Goals with scripts

- 1. Design grouting geometry in a parametric 3D way «on the fly»
 - New design process: tailormade grouting geometry for each unique rock face (use data from engineering geology mapping on face + automated mapping with plane detect etc, MWD) >>> reduce drilling to achieve the leakage requirement
 - Reduce quantities in grouting (drilling time, grouting time, grouting materials).
 - Ensure optimal covering of the tunnel profile
- 2. Dicipline model for grouting in a parametric and quick way
- 3. Tool for estimation of quantities for grouting

NG DIGITAL

Machine learning in applied geosciences

Emerald - construction of bedrock topography

- Geotechnical drillings:
 - Expensive site investigation
 - Time consuming
 - Accurate, but very local
- **¬** Geophysics:
 - Less expensive
 - Very fast
 - Covers large volume
 - Greater uncertainty

Monitoring system of the Baijiabao landslide

LSTM model for prediction of displacement

Rockmass classification from MWD-data

- Holmestrandstunnelen:
 - 4 km of MWD-data blasting holes
 - Mapped Q-value and rockmass class
- Goal: Predict rockmass class in front of the face, in order to plan in advance:
 - Wider profile for heavy rock support
 - Spiling bolts
 - Other operational planning

Measure while drilling (MWD)

Depth (m)	Penetration (m/min)	Rotation pressure (bar)	Feeder pressure (bar)	Hammer pressure (bar)	Rotation speed (rpm)	Water pressure (bar)	Water flow (l/min)
0,351	1,9	89	53	111	268	25	120
0,401	1,8	95	54	m	271	25	119
0,454	2,0	94	58	121	271	25	120
0,505	2,5	89	64	149	272	25	120
0,556	2,9	90	68	168	272	25	118
0,609	3,6	90	71	176	272	25	116
0,66	3,5	99	77	180	272	25	116
0,71	3,4	108	79	182	268	25	117
0,761	3,4	109	79	180	266	25	116
0,813	3,5	m	78	184	266	25	116
0,866	3,4	108	78	182	266	25	116
0,918	3,3	107	78	183	267	25	116

Photos and figures: NFF Publication 28

Geology and rockmass classes

Modelling process

- Built on experience from:
 - Eldert et. al (2019), Application of MWD technology to predict rock mass quality and rock support for tunneling
 - Galende et. al (2018), MWD-based estimation of rock mass rating with computational intelligence. The case of tunnel excavation front.
 - Hayashi et. al (2019), Prediction of forward tunnel face score of rock mass classification for stability by applying machine learning to drilling data.
- Combined 290 sections of blasting rounds
- Preprocess, clean and scale data
- Downscale 150-170 blast holes in each section to 3 summaryparameter (mean, median, variance) for each MWDparameter, in total 18 parameters + blasting length and mapped rockmass-class from last section

Challenge – downscaling (dimention reduction)

Rergklasse	last_Rergklasse	FeederP_mean	FeederP_me	l FeederP_var	HammerP_mean	HammerP_med H	ammerP_var	Penetr_mean	Penetr_med P	Penetr_var R	otaP_mean	RotaP_med F	RotaP_var	WaterF_mean W	/aterF_med V	VaterF_var	WaterP_mean W	/aterP_med_W	/aterP_var_salv	velengde
D	D	78,40	80,6	8 195,54	149,40	156,41	413,55	3,77	3,62	1,88	95,77	97,52	102,43	118,63	120,39	215,35	20,02	19,75	2,93	3,3
D	D	74,89	77,5	1 179,98	144,45	152,26	503,44	3,53	3,54	1,07	93,32	94,91	115,22	120,41	124,29	250,07	20,77	20,53	2,96	3,3
D	D	70,77	7	4 217,94	140,66	149,66	658,37	3,36	3,19	1,06	92,88	92,38	171,14	123,63	127,49	277,77	21,2	21	2,63	6,1
С	D	82,82	81,7	8 183,37	156,93	161,32	270,66	3,37	3,37	0,45	96,1	99,55	131,37	118,31	123,03	185,78	20,64	20,51	2,75	4,7"
C	C	91,85	93,7	3 156,37	157,44	161,1	237,38	3,19	3,05	1,34	100,/1	101,24	45,82	11/,66	123	165,08	20,7	20,6	1,45	6,2
D	D	87,01	87,8	9 177,73	155,55	159,4	294,13	2,77	2,79	0,27	99,38	100,41	65,88	120,87	124,14	215,89	21,38	21,17	4	5,3
С	С	88,76	90,	6 133,42	157,79	161,71	258,8	3,28	3,15	1,7	100,01	101,09	52,47	118,06	125,76	293,25	21,31	21,23	1,61	3,4
С	С	86,27	87,	4 156,02	161,68	163,28	203,92	3,33	3,1	1,43	101,65	102,31	62,47	119,93	124,58	169,81	21,68	21,35	2,27	5,9
D	С	86,27	87,	4 156,02	161,68	163,28	203,92	3,33	3,1	1,43	101,65	102,31	62,47	119,93	124,58	169,81	21,68	21,35	2,27	5,9
C	D	87,11	85,8	1 138,55	161,83	163,19	172,17	2,98	2,96	0,33	89,97	97,16	328,15	123,18	125,38	133,75	20,43	20,09	3,09	5,6
D	D	88,72	88,9	2 174,18	162,90	164,43	252,56	3,49	3,52	0,4	97,55	98,12	66,9	114,39	115,05	181,34	21,71	21,52	2,1	5
D	D	90,77	93,5	9 258,52	150,43	156,15	356,35	3,07	3,09	0,55	93,02	95,85	110,24	114,63	118,06	124,14	20,97	20,97	1,1	5,8
D	D	96,48	102,5	9 217,04	161,52	160,57	133,11	3,33	3,26	0,37	95,28	96,29	85,69	122,76	125,88	129,93	21,8	21,65	2,02	5,6
С	D	97,48	100,	5 142,01	157,81	157,29	156,16	3,46	3,33	0,79	93,41	94,02	75,2	115,69	119,25	105,88	20,77	20,72	2,11	5,7
C	C	97,54	99,7	8 164,14	161,/4	158,80	110,47	3,6	3,53	0,27	98,07	97,67	58,63	11/,94	123,59	149,39	21,08	20,75	1,31	5,4-
В	С	92,88	93,1	8 126,4	156,24	156,58	149,77	3,49	3,47	0,3	96,43	97,65	44,53	117,56	120,73	103,47	20,57	20,47	1,34	5,7
В	В	91,95	92,	5 138,91	. 157	158,28	161,53	3,34	3,33	0,16	98,58	99,58	49,42	120,92	125,77	152,14	20,98	20,79	1,65	5,6
С	В	91,59	90,	6 133,85	161,01	160,66	150,24	3,5	3,52	0,21	100,61	100,86	41,3	120,09	127,4	157,41	21,27	21,19	0,95	5,7
С	С	86,97	84,1	6 173,19	158,59	159,36	261,92	3,28	3,28	0,45	90,1	94,74	233,15	119,09	124,57	161,14	20,79	20,79	2,53	5,8
D	С	91,98	89,7	6 150,37	163,47	161,75	209,07	3,36	3,37	0,15	100,58	101,68	88,16	117,34	122,95	151,72	20,83	20,71	1,23	6,2
С	D	89	87,7	7 140,4	164,59	163,38	112,6	3,39	3,44	0,34	100,9	101,79	112,01	121,93	124,96	156,85	21,82	21,73	2,9	5,4-
С	С	86,69	85,0	5 145,68	160,13	160,63	166,8	3,51	3,57	0,45	102,79	102	90,84	118,27	122,9	186,11	21,46	21,32	1,62	5,5
C	C	85,76	83,8	2 118,76	162,92	161,47	63,06	3,57	3,61	0,27	103,39	102,91	77,14	120,48	174,3	154,31	21,76	21,66	1,87	5,3
С	С	88,38	88,7	6 88,11	155,43	156,33	143,03	3,41	3,39	0,71	99,09	99,38	42,11	114,54	119,62	201,17	21,18	20,97	1,98	5,9
С	C	84,44	83,7	1 99,85	159,5	159,34	156,83	3,59	3,62	0,26	101,34	100,69	79,07	118,1	123,28	146,97	20,88	20,72	1,08	5,7
С	С	82,71	82,7	5 101,13	156,29	158,57	195,23	3,54	3,62	0,45	97,66	98,32	92,03	115,77	123,29	223,07	21,25	21,12	1,39	5,9
С	С	89,01	86,4	7 177,69	162,85	162,93	222,96	3,39	3,52	0,32	101,09	101,41	53,92	112,52	122,19	341,28	21,63	21,48	1,61	5,8
υ	C	81,11	85,4	/ 150,68	160,22	160,79	18/,33	3,84	3,8/	0,49	97,82	98,1	50,64	113,99	119,47	183,/1	21,26	21,17	1,2	3,5
D	D	82,06	82,0	8 116,91	. 152,7	154,96	219	3,91	3,86	1,48	93,2	94,07	75,21	122,85	128,08	160,57	22,15	22,02	1,89	3,6
D	D	78,83	78,7	1 70,93	153,94	156,25	160,48	4,24	3,98	3,09	96,47	96,74	96,31	120,88	127,24	212,27	21,75	21,58	1,5	3,7"
D	D	85,44	83,4	5 178,82	154,74	156,87	271,86	3,93	3,72	3,21	95,41	96,35	60,82	121,43	128,56	298,54	21,89	22,01	2,08	3,5
D	D	83,9	82,3	4 130,68	152,22	154,11	188,96	4,08	3,82	2,7	94,1	94,71	51,88	121,47	126,73	170,84	21,37	21,36	1,92	3,6
D	D	82,85	83,	2 127,65	153,27	156,09	240,78	3,94	3,81	1,83	93,35	94,76	100,02	120,56	126,81	237,28	21,49	21,26	1,85	3,6
D	D	76,15	78,1	4 126,31	. 164,84	166,54	156,78	3,83	3,58	4,02	74,36	73,44	37,69	121,88	127,2	169,18	21,89	21,61	1,74	3,5
D	D	73,85	74,5	3 72,34	164,92	165,92	117,36	3,91	3,79	1,84	73,31	73,01	46,64	121,03	128,81	219,24	21,86	21,71	1,35	3,3
D	D	72,75	72,2	3 172,76	169,01	173,23	159,89	4,18	3,91	3,16	77,41	76,32	126,85	121,64	126,71	202,69	22,22	22,32	3,17	3,2
D	D	71,46	74,5	5 99,08	150,66	162,17	287,36	3,29	3,34	1,78	76,44	76,07	63,74	129,84	130,93	461,28	22,08	22,15	3,85	5,6
D	U	66,24	66,6	2 37,75	163,37	166,62	220,85	3,/3	3,85	0,42	/1,6	69,65	6/,/b	119,22	126,48	218,38	21,83	21,67	1,48	6,2
С	D	72,05	74,9	8 87,6	163,67	164,85	167,31	3,5	3,55	0,71	71,63	69,39	55,13	117,74	122,89	195,78	21,1	20,8	2,65	5,1
0	C	75 50	76.0	ד רד ד	162.04	166 10	215 71	2.62	2.6	0.01	77 15	74 02	110.34	121.02	105.01	174.26	22.26	22.05	2.1	5.6

We use KE

- We use KERAS running on top of TensorFlow in Python to perform a supervised non-linear regression analysis.
- The Artificial Neural Network (ANN) is a Multilayer Perceptron (MLP) model and consists of three layers with a width of 250 neurons each.
- We have 20 Input parameters
- 1 Output per depth

ANN model

– Rockmass class

3 hidden layers

Results

- 75/25 Train and Testset (unseen data for the model)
- Algorithms tested out:
 - Logistic regression: 59%
 - KNN:48%

- Random Forest: 72%
- Gradient Boosting: 81%
- 83+/- 8% accuracy on test set with neural network
- **7** Further development:
 - Increase accuracy close to 100%
 based on clustering and principal component analysis (PCA) –
 before neural network.
 - Build a more general model based on data from many tunnel projects. Need more data ☺
 - Predict from drilling for grouting 10-15-20 m in advance

Epoch 1/20	
230/230 [========================] - 12s 54ms/step - loss: 1.0467 - acc: 0.669)6
Epoch 2/20	0
230/230 [===============================] - 0s 913us/step - loss: 0.5620 - acc: 0.821	.7
Epoch 3/20	
230/230 [====================================)9
Epoch 4/20	
230/230 [========================] - 0s 1ms/step - loss: 0.3371 - acc: 0.8739	tua
Epoch 5/20	Act
230/230 [========================] - 0s 649us/step - loss: 0.2810 - acc: 0.887	0 0
Epoch 6/20	
230/230 [========================] - 0s 954us/step - loss: 0.2566 - acc: 0.895	57
Epoch 7/20	
230/230 [========================] - 0s 865us/step - loss: 0.2125 - acc: 0.936	o)4 ۳
Epoch 8/20	
230/230 [========================] - 0s 873us/step - loss: 0.1851 - acc: 0.930)4
Epoch 9/20	
230/230 [=======================] - 0s 856us/step - loss: 0.1603 - acc: 0.94	5
Epoch 10/20	
230/230 [=======================] - 0s 824us/step - loss: 0.1412 - acc: 0.952	2
Epoch 11/20	
230/230 [========================] - 0s 724us/step - loss: 0.1462 - acc: 0.936	14
Epoch 12/20	
230/230 [=======================] - 0s 878us/step - loss: 0.1283 - acc: 0.94	15
Epoch 13/20	
230/230 [=======================] - 0s 1ms/step - loss: 0.1001 - acc: 0.9652	
Epoch 14/20	
230/230 [=======================] - 0s 719us/step - loss: 0.0845 - acc: 0.978	13
Epoch 15/20	
230/230 [=======================] - 0s 1ms/step - loss: 0.0706 - acc: 0.9826	
Epoch 16/20	
230/230 [=======================] - 0s 994us/step - loss: 0.0713 - acc: 0.978	13
Epoch 17/20	
230/230 [========================] - 0s 866us/step - loss: 0.0639 - acc: 0.978	13
Epoch 18/20	
230/230 [========================] - 0s 770us/step - loss: 0.0510 - acc: 0.982	.6
Epoch 19/20	
230/230 [================================] - 0s 908us/step - loss: 0.0412 - acc: 0.995	
Epoch 20/20	
230/230 [======================] - 0s 850us/step - 1oss: 0.0387 - acc: 0.987	0
<keras.callbacks.history 0x17b16290908="" at=""></keras.callbacks.history>	

acc:	80.00%	
acc:	83.33%	
acc:	75.86%	
acc:	93.10%	
acc:	82.76%	
acc:	89.66%	
acc:	82.76%	
acc:	93.10%	
acc:	64.29%	
acc:	84.62%	
82.95	5% (+/-	8.13%)

Closing the circle - 3D/BIM in parametric design and tools for machine learning

Modules for machine learning in Grasshopper

NORGES GEOTEKNISKE INSTITUTT NGI.NO

DIGITAL