

Water control in TBM excavated tunnels

- Experience from the Follo Line Project

Anne Kathrine Kalager – Project Manager

The civil work for Follo Line project is divided in four sub-projects

The longest railway tunnel within the Nordic countries so far. The first tunnel in Norway with two separate tubes

The rig area at Asland between Oslo and Ski

Geology

- Predominantly Precambrian gneisses banding and lenses of amphibolite and pegmatite
- The rock mass is in general homogenous, abrasive and strong. Mean Uniaxial strength is 150 MPa
- Moderate jointing, but some groups of fractured zones intersect the tunnel and may act as drainage channels
- Average overburden approx. 80 meters variations of between 5 to 170 meters
- Sedimentary shale in the northern part

The tunnel excavation: Was prepared for hard rock and several water bearing fracture zones **BANE NOR**

Four tailor-made tunnel boring machines (TBM) made for hard Norwegian rock and equipped to perform¹ pre-grouting in areas where leakages were expected (Foto: Herrenknecht)

Some facts about the TBM: length 150 m, weight 2400 tons, diameter 9,96 m, 71 cutters

Produced at site: 141 000 segments for the lining of the long waterproof tunnel **B**ANE NOR and 20 000 invert segments

An undrained/ water-tight tunnel-solution - excavated by a shield-TBM in combination with installation of a water-tight lining in the main tunnel and in the CP's

Leakages from fracture-zones could affect the pore-pressure within a large area

Identified fracture zones with a thickness of > 1 meter. The tunnels are with different angels crossing these zones. The fracture-zones spans from vertical to horizontal.

The fractures were connected to each other. Intersecting a fracture-zone may influence on the pore-pressure far away from the tunnel

No fractures – Less penetration More fractures – Higher penetration

Sensitivity zones

Based on knowledge of the geological conditions, the entire tunnel-section was divided in different sensitivity classes

Sensitivity class	Likelihood of settlements	
Small sensitivity	Low	
Very sensitive	🕂 High	

Km	Location	Area classification of pore pressure sensitivity	Comments
2.8 - 4.0	Below Ekeberg (to Holtet)	Small sensitivity	Excisting caverns and tunnels in the area
4.0 - 5.0	Holtet -Lambertseter	Moderate sensitivity	
5.0 - 7.8	Nordstrandsplatået	Sensitive	
7.8 – 8.5	Ljanselva -Gjersrudbekken	Small sensitivity	
8.5 – 9.0	Bjørnerud	Moderate sensitivity	The escape tunnel in this area will be constructed by D&B
9.0 - 11.2	Grønliåsen north	Small sensitivity	The escape tunnel in this area will be constructed by D&B or TBM
11.2 - 12.0	Grønliåsen	Moderate sensitivity	The installation cavems and associated tunneling systems will be constructed by D&B
12.0 – 15.7	Snipetjern -Assurdalen	Sensitive	
15.7 – 18.9	Assurdalen - Sloraveien	Moderate sensitivity	
18.9 – 20.6	Sloraveien – Ramstad S	Very sensitive	The most sensitive area above the tunnel is at Sloraveien and Ramstad
20.6 - 21.3	Ramstad – Portal Langhus	Moderate sensitivity	

Daily Probe-drilling to detect water leakages ahead of the TBM

Probe-drilling was performed on a daily basis. This gave an overlap of the probe-holes and were used to complete the picture of the geological conditions

Probe-drilling and pre-grouting from 38 different positions around the shield

The number of probe-holes and trigger-values

- Orientation of the probeholes
- The number of probeholes
- How much leakages
 could be accepted

More probe-holes distributed around the cross-section increased the likelihood of detecting water

Trigger-values were lowered to achieve control of the water balance

Face-mapping, probe-drilling and pre-grouting

- Good correlation between detected water leakages and identified fracture zones
- Similar correlation with the amount of microcement pumped into the different holes.
- Normally 20 holes in the umbrella
 - No water detected during face-mapping
 - Water detected during face-mapping
 - No water detected during probe-drilling
 Water detected during probe-drilling and pre-grouting

Total excavation: 36 027 meter tunnel – 100 % finalized tunnel 7 500 meter of the tunnel-length have been pre-grouted

Two successful double break-throughs

Double Break-through in the north 11th of September 2018 2 years after start-up

Double Break-through in the south 26th of February 2019 2 years and 3 months after start-up BANE NOR

Lessons learned

- Detailed geological mapping and clear requirements regarding probe-drilling and pregrouting in the contract
- Install efficient probe- and pre-grouting equipment on the TBMs
- Skilled personnel with experience with high pressure pre-grouting
- Fracture-zones are connected to each other, so a penetration of one zone may affect the porepressure within a large area
- Probe-drilling and pre-grouting procedure must be tailormade and flexible during the excavation
- By installing a water-tight lining, the pre-grouting just need to limit the amount of leakages – not stop it completely

The need for doing pre-grouting to achieve control of waterleakages is NOT a show-stopper for using TBM

Thank you for your kind attention!

	\sqrt{XXXX}
///////////XX	XXXXXXX
	XXXXXXX
	$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$
	XXXXXX
/////////XX	$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$
	$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} $
	X X X X Y