European Shotfirer Standard Education For Enhanced Mobility – ESSEEM –
ESSEEM WP 7 Demolition

worked out and giving a lecture by
Walter Werner
Contents:

1. Types of buildings and definitions
2. Blast methods
3. Explosives and detonators / stemming
4. Environmental aspects
5. Basic of structural engineering
6. Calculation of charges
7. Examples
 7.1 Highway bridge
 7.2 smoke stacks
8. Misfires
ESSEEM WP 7 Demolition

Time table

<table>
<thead>
<tr>
<th>topics</th>
<th>time min</th>
<th>method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Types and definitions</td>
<td>30</td>
<td>theory</td>
</tr>
<tr>
<td>2. Blast methods</td>
<td>150</td>
<td>theory</td>
</tr>
<tr>
<td>3. Explosives/detonators/stemm.</td>
<td>30</td>
<td>theory</td>
</tr>
<tr>
<td>7. Examples</td>
<td>480</td>
<td>theory+excers.</td>
</tr>
<tr>
<td>8. Misfires</td>
<td>360</td>
<td>examples</td>
</tr>
</tbody>
</table>

\[\sum 1.830\]
1. Types of buildings and constructions

- tall/slim: towers, masts, pylons, smoke stacks
- massive: shelters, fortifications, abutments, walls, bridges, foundations
- steel constructions
- others: houses
- mix of several types: slim and massive
1.1 Distinction between

- tall
- slim

\[\text{tall} = \text{high (reaching)} \]
\[\text{slim} = \text{slimness degree} > 3 \]

slimness degree: relation between basic dimension and height
ESSEEM WP 7 Demolition

tall but massive
tall and slim
ESSEEM WP 7 Demolition

massive constructions

air raid shelter at Luebeck

fundaments in a glass factory
2. Methods to blast constructions:

- tilting
- collapsing
- combined tilting – collapsing
- folding
- lowering
- breaking up
- contour and smooth blasting
2.1 tilting

150 m tall chimney
blast level: + 45 m

power station
Lübeck/Germany
2.2 collapse
82 m high skyscraper at Hamburg (D)
structural analysis indispensable
2.3 combined tilting / collapsing
92 m tall sky scraper at Hagen (D)
(system drawing)
structural analysis indispensable
2. 4 folding
300 m tall
smoke stacks
at power station
Boxberg (D)
i structural
analysis indispensable
2.4 lowering

→ should be announced in advance
2.6 breaking up
2.7 contour blasting

contour blasting „window“

smooth blasting
3. Explosives

– commonly used:
 - ammongelite
 - emulsions

– special explosives:
 - linear shaped charges (flexible or rigid)
 - plasticized explosives (e.g. PETN, hexogen, octogen)
 - detonating cord (20 g/m - 100 g/m)
examples of special explosives

„CISALEX“ for contour blasting (France)

linear shaped charges
ESSEEM WP 7 Demolition

linear shaped charges

i follow instructions of manufacturer about cutting force
i correct stand off indispensable
i precise instantaneous initiation absolutely necessary
Initiation systems
– electric detonators
– non electric detonators
– electronic detonators
– (detonating cord)
– combination of systems: e.g.: shock tube and electronic detonators
Stemming
– horizontal drill holes of small diameter
– often short charge column

appropriate materials:
• foam (for installation)
• wet clay
• cartridges filled with sand or water/gel
Stemming
– unsuitable materials
 • hardening materials like mortar
 • materials without sufficient interior friction
 • like drill meal or powder

D attention: stemming must not damage the wires of detonators or shock tube
ESSEEM WP 7 Demolition

stemming with foam
4. Environmental aspects

Prognosis of vibrations
– charges below surface:

\[v_{\text{max}} = 250 \cdot \frac{L^{2/3}}{R} \]

– charges above surface:

\[v_{\text{max}} = 100 \cdot \frac{L^{2/3}}{R} \]

\(v_{\text{max}} \) = max. vibration
\(L \) = charge in [kg]
\(R \) = distance [m]
prognosis of vibrations by impact:

\[v = k \cdot 10 \cdot \frac{m^{1/3} \cdot H^{1/2}}{R^{1.15}} \]

- \(v \) = vibration [mm/s]
- \(k \) = transmission (soil) factor (mostly 2 – 4)
- \(m \) = mass of impact [t]
- \(H \) = height of mass (centre of gravity) [m]
- \(R \) = distance [m]
ESSEEM WP 7 Demolition

reducing of impact: fall bed („impact cushion“)
Safety measurements

• active protection
 ➢ geo textiles, felt mats, conveyor belts, blast mats (treads of tires), meshed wire, steel nets, bales of straw (hay, paper, wood wool), sand, soil

• passive protection
 ➢ scaffolding with geo textiles, felt mats, conveyor belts
 ➢ walls from plywood, steel plates, concrete plates
 ➢ containers (empty or filled with rcl material or soil)
ESSEEM WP 7 Demolition

protection against fly of debris: geo textile
ESSEEM WP 7 Demolition

- protection against fly of debris:
 geo textile and mesh wire
protection against fly of debris: geo textile and mesh wire
ESSEEM WP 7 Demolition

Protection against fly of debris
(rubber blast mats form tires)
ESSEEM WP 7 Demolition

protection of neighbourhood by scaffolding and geo textile
Dust suppression by blowing up water filled big bags
5. Basic of structural engineering

- distinction of load-bearing and not load-bearing construction elements
- condition of tilting: centre of gravity must be moved outside the base
- rudimentary knowledge of constructions
 principal of tilting
center of gravity (S) must be
shifted outside of base (S')

\[\alpha = \text{angle} \]
\[\alpha' = \text{angle of blast mouth} \]
ideal behaviour = tilting (rotation) D break down of the rear pillar

possibilities of behaviour
result: sinking instead of rotating
→ easy method to prevent sinking by a pile of rubble or recycling material
6. Calculation of charges

i. formula:

\[L = w \cdot a_B \cdot a_R \cdot q \]

- \(L \) = loading in kg
- \(w \) = burden [m]
- \(a_B \) = distance of bore holes [m]
- \(a_R \) = distance of rows [m]
- \(q \) = powder factor [kg/m\(^3\)]
i Definition of „burden“

„burden“ is the shortest distance of the middle of the charge to the next free face (in meter)

(The free faces can also be generated by rows with earlier detonations)

examples: wall of a chimney: half of the thickness

slab of a bridge: half of the thickness
7.1 Concrete example: motorway bridge
length: 31.80 m width: 7.50 m thickness: 1.05 m
material: reinforced concrete
mass: slab: ~ 250 m³ abutments: 2 x ~ 63 m³
middle pillar: ~ 42 m³ total: 418 m³
ESSEEM WP 7 demolition

slab:
drilling pattern: 0.83 m x 0.83 m
(random holes have a distance of 0.61 m from random)

number of holes: 357
depth of holes: 0.72 m (~ 2/3 of slab thickness)
diameter of holes: 38 mm
drill rig: hydraulic machine
drilling pattern top view
slab: horizontal cross sections
ESSEEM WP 7 Demolition

slab:
calculation of charges:

– powder factor: 0.500 kg/m³
– burden: \(\frac{1}{2} \) slab = 0.525 m
– spacing: 0.83m x 0.83 m
– (random holes: 0.61 m x 0.83 m

\[L = 1.05 \text{m} \times 0.83 \text{ m} \times 0.83 \text{ m} \times 0.5 \text{ kg/m}^3 = 0.362 \text{ kg} \]
ESSEEM WP 7 Demolition

charges of slab: random holes:

\[L = 1.05 \text{m} \times 0.61 \text{m} \times 0.83 \text{m} \times 500 \text{kg/m}^3 = 0.266 \text{ kg} \]

loaded charges: 0.4 kg = 1 cartridge Ø 30 mm x 380 mm
and 0.25 kg = 1 cartridge Ø 25 mm x 380 mm

total:

\[84 \times 0.250 \text{ kg} = 21 \text{ kg} \]
\[273 \times 0.400 \text{ kg} = 109.2 \text{ kg} \]

\[\Sigma = 130.2 \text{ kg} \]
Initiation:
shock tube detonators and detonating 5 g/m delay 1 – 20 (25 ms)
initiation starting in the middle of the bridge abutments: with delay 1
ESSEEM WP 7 Demolition

abutments
dimensions:
thickness under slab: 1.40 m
lower parts: 1.9 m – 3.30 m
height: 4.50 m
length: 7.00 m

drilling: inclination of 9°
distance of holes: 1.00 m
depth of holes: 4.5 m + 1.06 m
additional holes in the spur;
wings already demolished
Calculation of charges

Principle:

Volume x powder factor = charge

Powder factor for cast concrete:

0.300 kg/m³

deck loading with detonating cord
ESSEEM WP 7 Demolition

middle pillar:
length: \(~ 9.0 \text{ m}\)
drilling:
vertical holes in
one row of \(5.6 \text{ m}\)
depth
distance of holes:
\(0.83 \text{ m}\)
middle pillar:

loading scheme

deck loading

powder factor: 0.300 kg/m³
load per hole: 2.500 kg
total: 15.000 kg

detonating cord: 12 g/m
ESSEEM WP 7 Demolition

the blast
7.2 smokestacks

material:

- brickwork (up to 140)
- (reinforced) concrete
- cavity blocks
- mixed: lower part: concrete
 upper part: brick work

commonness

- frequent
- becoming more frequent
- seldom
- sometimes
ESSEEM WP 7 Demolition
ESSEEM WP 7 Demolition
ESSEEM WP 7 Demolition

Blasting methods: i structural analysis necessary
 tilting folding collaps
importance of „windows“:
- give clarity about material
 (hidden rings of steel or/and concrete)
- limit destruction of bearing back wall
- reveal soot / dust
- determine precise tilting direction

preferred shape:
 triangle (trapeze)
peculiarities:

brick work smoke stacks:
 - soot
 - smoke outlets
 - reinforcement rings (inside of the brick work
 - steel rings outside
 - reinforced walls
 - steel tubes inside
 - double walls (second wall inside for smoke)
study of premature collapse and later tilting

220 m tall smoke stack of a refinery
peculiarities of concrete smoke stacks:

- big problem:

D weaknees of thin walls can lead to a premature collapse

- solution: installation of a steel hinge
ESSEEM WP 7 Demolition

Di premature collapse
ESSEEM WP 7 Demolition

premature collapse and deviation of fall direction due to lacking structural analysis
drilling of smoke stacks:

normally from outside

D when from Inside:
consider the growing
distance
of the holes
smoke stacks: calculation of charges

powder factor:
brick work: 0.600 - 0.800 kg/m³

reinforced concrete: up to 1.500 kg/m³

rule of thumb: better more than less
ESSEEM WP 7 Demolition

- to consider

D length of fall:
reinforced concrete smokestacks can „grow“ up to 25 % of their length

debris can fly far away by angle acceleration

lateral expansion movement backwards
ESSEEM WP 7 Demolition

8. Frequent mistakes/misfires

8.1 D misjudgement of structure
 behaviour of collapse
 insufficient knowledge about structure/reinforcement

8.2 D initiation
 wrong sequence of delays
 lack of current (only electric detonators)

8.3 D wrong drilling
ESSEEM WP 7 Demolition

collapse of rear columns

failure of connection of the connection of the two parts of the building
ESSEEM WP 7 Demolition

D misjudgement of structure - no support of rear columns
insufficient knowledge and wrong judgement of reinforcement
ESSEEM WP 7 Demolition

D explosion of soot / chemical dust
D damaged wire, danger of misfire because of loss of current

reinforcement bars as “razor blades” can damage wires
ESSEEM WP 7 Demolition

wrong drill pattern distance of holes to large
ESSEEM WP 7 Demolition

References:

NOBEL-Hefte, Troisdorf
J. Lippok: Bauwerkssprengungen, Berlin 2006
J. Lippok + D. Korth: Abbrucharbeiten, Köln 2007

Own sources and pictures and experiences