Environmental impact: TBM versus D&B

Christofer Skaar
Senior researcher, SINTEF Building and Infrastructure
Adjunct associate professor, NTNU

Morten Bergem
Project design manager, JM Norge AS

Pål Drevland Jakobsen
Associate professor, NTNU
Overview

1: Methodology

Goal & scope
Inventory analysis
Impact assessment
Interpretation
Applications: Focuses on improvements, product development, planning, procurement, etc.

2: LCA model

TBM
- VW excavation
- Rock support
- Preliminary work

Drill & blast
- VW excavation
- Rock support
- Preliminary work
- Ash tunnels

3: Results

4: Implications

Feasibility
Concept study/design
Execution/excavation
Detailed design

5: Conclusions
Life Cycle Assessment (LCA)

- Goal & scope
- Inventory analysis
- Impact assessment
- Interpretation

Applications
- Process improvement,
- product development,
- planning,
- procurement,
- etc.
Life Cycle Assessment (LCA)

Goal & scope: Function
- Transportation system?
- Road infrastructure?
- Tunnel?

Applications
- Process improvement,
- product development,
- planning,
- procurement,
- etc.

Components:
- Goal & scope
- Inventory analysis
- Impact assessment
- Interpretation
Life Cycle Assessment (LCA)

Goal & scope: Function

Apples or oranges? Comparisons must be **fair**

Applications

Process improvement, product development, planning, procurement, etc.

Goal & scope

Inventory analysis

Impact assessment

Interpretation
Life Cycle Assessment (LCA)

Goal & scope: Function

Functional unit: 1 km main tunnel

Applications
- Process improvement,
- Product development,
- Planning,
- Procurement,
- etc.

Goal & scope

Inventory analysis

Impact assessment

Interpretation
Life Cycle Assessment

Goal & scope

Inventory analysis

Impact assessment

TBM
- TBM tunnel
 - TBM excavation
 - Rock support
 - Preliminary work

Interpretation
- Applications: Process improvement, product development, planning, procurement, etc.

Drill & blast
- D&B tunnel
 - D&B excavation
 - Rock support
 - Preliminary work
 - Adit tunnels
Life Cycle Assessment (LCA)

- **Raw material manufacture**
 - By-products, waste
 - Machinery, fuel, etc.

- **Manufacture of TBM or drill rig**
 - Intermediaries, energy, etc.

- **Excavation**
 - By-products, waste
 - Fuel, trucks, ventilation, lighting, etc.

Function: Tunnel
Functional unit: 1 km tunnel with a lifetime of 60 yrs
Calculate the inputs from nature and outputs to nature for all processes we have in our system. (inputs/outputs = elementary flows)
Tunnel Boring Machine (TBM) vs. Drilling and Blasting (D&B)

- 2 technologies:
 - TBM
 - D&B
- 3 levels of rock support for each technology:
 - No support (low)
 - Medium support
 - High support
- In total: 6 scenarios

Global warming potential per tunnel length (0-1 km)
Tunnel Boring Machine (TBM) vs. Drilling and Blasting (D&B)

- 2 technologies:
 - TBM
 - D&B
- 3 levels of rock support for each technology:
 - No support (low)
 - Medium support
 - High support
- In total: 6 scenarios

Low level
No rock support

Medium level
Rock support in demanding hard rock conditions, crossing several weakness zones and with strict requirements of water ingress

High level
Rock support with 1) very strict requirements on water ingress and tunnel lining and/or 2) in very poor rock conditions with heavy rock support is needed for the whole tunnel length.

NOTE: The medium and high rock support scenarios are technology specific. The material types and amounts differ for TBM and for D&B.
Break even, D&B vs TBM
Low support: 700 meter
Medium support: 880 meter
High support: TBM always highest

Slope
Rock support is the main cause
Adit tunnels are minor cause

GWP rate of change:
$\Delta TBM \text{ high} > \Delta D&B \text{ high}$
$\Delta TBM \text{ medium} < \Delta D&B \text{ medium}$
$\Delta TBM \text{ low} < \Delta D&B \text{ low}$

0 km
TBM has higher initial impact due to heavier machinery and longer transportation distance.

Global warming potential per tunnel length (0-1 km)
Tunnel Boring Machine (TBM) vs. Drilling and Blasting (D&B)

Global warming potential

Acidification potential

- **Excavation**
- **Rock support**
- **Transport machines**
NB! Beware of differences in scale and units.
1 kg CO2 is not equal to 1 kg of SO2 (apples and oranges).
Global warming is not directly comparable to acidification.

Tunnel Boring Machine (TBM) vs. Drilling and Blasting (D&B)
Core components, global warming: TBM versus D&B

<table>
<thead>
<tr>
<th>Tunnel type</th>
<th>Rock support level</th>
<th>Transport of machinery</th>
<th>Excavation</th>
<th>Rock support</th>
</tr>
</thead>
<tbody>
<tr>
<td>D&B</td>
<td>Low</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TBM</td>
<td>Low</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Global warming

- Gas Low
- Gas Med
- Gas High
- TBM

Ozone depletion

- Gas Low
- Gas Med
- Gas High
- TBM

Eutrophication

- Gas Low
- Gas Med
- Gas High
- TBM

Acidification

- Gas Low
- Gas Med
- Gas High
- TBM

- Excavation
- Rock support
- Transport machines
Implications: Project stage

- Concept studies with environmental focus
- Ranking of various concepts (tunnel alignments, bridge vs. tunnel etc.)

- Estimate the environmental performance compared to the old road, railroad etc.
 - Validate feasibility

- Documentation
- Collection of material and energy data

- Procurement / supplier selection
- Validate concept study/design
Implications: Improvement potential

- Project level
 - Electricity source? (4000 kWh per meter)
 - Excavation: Loading and hauling?
 - Rock support: Cement and steel consumption?
 - Supplier selection: Environment as procurement criteria? (cement, steel, explosives possible with EPD. Why not TBM?)

Environmental product declarations can be made for:

- Steel
- Cement
- Explosives

Why not for TBM?
Implications: Improvement potential

• Project level
 • Electricity source? (4000 kWh per meter)
 • Excavation: Loading and hauling?
 • Rock support: Cement and steel consumption?
 • Supplier selection: Environment as procurement criteria? (cement, steel, explosives possible with EPD. Why not TBM?)

• Scope: What is the **function** your system?
 • Tunnel \rightarrow waste to landfill
 • Tunnel and by-products \rightarrow **less** waste to landfill
 • Construction aggregate
 • From muck to mineral: Glass, concrete, steel, etc.
Conclusions, TBM vs D&B

• Key parameters
 • Tunnel length and type of rock support
 • *Beware: Specific projects may vary significantly*
• GWP as a proxy indicator for life cycle environmental impact
 • Correlates well with many impact categories
 • But not all, e.g. acidification
• Improvement potential can be found at all levels

Think of function and system scope
Questions?